
PDP-8/X System Reference Manual

dgc@spies.com (David G. Conroy)

Last Updated on Monday, August 14, 2000 at 5:29:52 PM

1. Introduction
The PDP-8/X is a new implementation the Digital Equipment Corporation PDP-8.

The PDP-8/X system is implemented by two FPGAS. The first FPGA contains the
processor. The second FPGA contains the serial line interface and the IDE disk
interface. The memory (which consists of a 32K word normal memory used by
standard software, and a 4K word panel memory which us used only by the
software which emulates the front panel) is implemented by four 32K x 8 static
RAMS.

2. CPU and Memory
The PDP-8 architecture survived for twenty-five years, and during those years
thirteen distinct models were implemented (the PDP-8 was introduced in 1965,
and the DECMATE-III/III+ were discontinued in 1990). These models differed from
each other in minor ways. The PDP-8/X most closely emulates the PDP-8/I; the
PDP-8/I was chosen because it eliminates all of the restrictions imposed on the
operate instruction in earlier models, and does not implement the more complex
instruction set of later models.

The PDP-8 uses big-endian bit numbering (that is, bit 0 is the most
significant). This specification does the same. The PDP-8/X hardware, however,
uses little-endian bit numbering (that is, bit 0 is the least significant bit)
so that the processor, the static RAMS, the EPROM, and the IDE disk can number
the bits the same way. Think of this as preserving one of the less-than-
wonderful traditions of DEC designs.

2.1. CPU State
PC[00..11] The PC register holds the address of the next instruction to

be executed.

AC[00..11] The AC register is the primary arithmetic and logical
register. It can be loaded and stored, and serves both as
operand and result for logical AND and ADD operations, The
AC register can also be cleared, complemented, incremented,
tested, and rotated left or right with the LINK flag.

LINK The LINK flag is a logical extension of the AC register. It
is complemented if an addition operation involving the AC
register results in a carry. The LINK flag can also be
cleared, complemented, tested, and rotated left or right
with the AC register.

IF[00..02] The IF (“instruction field”) register holds the three most
significant bits of the instruction field address.

IB[00..02] The IB (“instruction buffer”) register holds the three most
significant bits of a new instruction field address. It is
explicitly loaded by a program which wants to change the IF
register, and implicitly loaded into the IF register by
instructions which change the flow of control.

DF[00..02] The DF (“data field”) register holds the three most
significant bits of the data field address.

SF[00..05] The SF (“save field”) register saves the contents of the DF
register and the IF register during an interrupt. The
contents of the DF register and the IF register are
implicitly loaded into the SF register at the beginning of
an interrupt, and the contents of the SF register can be
explicitly loaded into the DF register and the IB register
at the end of the interrupt service routine.

IE The IE (“interrupt enable”) flag is 1 if the CPU is running
with interrupts enabled, and is 0 if it is running with
interrupts disabled.

II The II (“interrupt inhibit”) flag is 1 if the CPU is running
with interrupts inhibited, independent of the state of the
IE flag, because the program is in the middle of an update
to the IF register. The II flag is set to 1 when the IB
register is loaded, and set to 0 when the value in the IB
register is transferred into the IF register.

SW[00..11] The SW (“switch”) register emulates the switches normally on
the front panel of a PDP-8. The console program writes this
register with an I/O instruction, and any program can read
this register with an operate instruction.

IM The IM (“instruction mode”) flag is 1 when the CPU is
running, and is 0 when the CPU is halted. In both states the
CPU is actually executing instructions, but when IM is 0 the
CPU is running the console program.

DM The DM (“data mode”) flag determines if data field
references should use the normal memory fields or the panel
memory fields. Normally it is forced to contain the same
value as the IM flag, but the control program can arrange
that it contains a 1 (which specifies normal memory) for the
execution of a single instruction, so that the console
program can read and write normal memory upon user commands.

Very little of the PDP-8/X state is initialized by reset; the 4K word EPROM is
copied into the lowest 4K locations of the panel memory, the PC is set to 0,
and the IM flag is set to 0. The front panel program, written in ordinary PDP-8
code, finishes the initialization of the entire system.

2.2. Memory Reference Instructions
 0 0 0 0 0 1
 0 2 3 4 5 1
+-+-+-+-+-+-+-+-+-+-+-+-+
F	I	C	Y
+-+-+-+-+-+-+-+-+-+-+-+-+

All memory reference instructions compute their effective address the same way.
If the C field is 0 then the address is said to be in page zero, and the Y
field specifies an address in the lowest 128 words. If the C field is 1 then
the address is said to be in the current page, and the Y field specifies an
address in the same 128 word page as the instruction (note that is not the page
from the PC, which may have incremented to the first address of the next page).
Then, if the I field is 1, a single level indirection is performed.

If an indirect word is fetched from locations 0010 through 0017 in any memory
field (the “auto index” locations) then that indirect word is incremented (and
rewritten to memory) before it is used.

The above algorithm generates the twelve-bit address which specifies a location
within a 4K word memory field. The field is specified by the contents IF and DF
registers (except when the processor is executing the front panel program,
which will be explained later). The field is specified by the contents of the
IF register unless the memory reference is the operand reference of an
indirectly addressed AND, TAD, ISZ, or DCA instruction, when it is specified by
the contents of the DF register.

000 AND The memory location specified by the effective address is
combined with the AC register with a logical AND operation.

001 TAD The memory location specified by the effective address is
combined with the AC register with a twos-complement add. If
there is a carry out of the most significant bit of the AC
register the LINK flag is complemented.

010 ISZ The memory location specified by the effective address is
incremented, and if the result of the increment is 0, then
the PC register is incremented, skipping the next
instruction.

011 DCA The AC register is stored into the memory location described
by the effective address, and the AC register is cleared.

100 JMS The IB register (which contains a potential update to the IF
register) is loaded into the IF register, and the II flag is
cleared (except when the processor is executing the front
panel program, which will be explained later). Then the PC
register, which has already been incremented to point to the
instruction after the JMS instruction, is stored into the
memory location described by the effective address, and the
PC register is loaded with the effective address plus 1.

2.3. JMP Instruction
 0 0 0 0 0 1
 0 2 3 4 5 1
+-+-+-+-+-+-+-+-+-+-+-+-+
1 0 1	I	C	Y
+-+-+-+-+-+-+-+-+-+-+-+-+

The JMP instruction evaluates its effective address in the same way as the
memory reference instructions. Then the IB register (which contains a potential
update to the IF register) is loaded into the IF register, and the II flag is
cleared (except when the processor is executing the front panel program, which
will be explained later). Then the effective address is loaded into the PC.

2.4. IOT Instruction
 0 0 0 0 0 1
 0 2 3 8 9 1
+-+-+-+-+-+-+-+-+-+-+-+-+
	D	C
1 1 0	E	M
	V	D
+-+-+-+-+-+-+-+-+-+-+-+-+

The IOT instruction is used to transfer data in an out of the processor via the
AC register. By convention bits [03..08] specify the I/O device, and bits
[09..11] specify the I/O command. All of the standard I/O devices comply with
this convention, although the actual interpretation of the IOT instruction is
controlled by the I/O device, so a custom I/O device could, in theory, violate
these conventions.

2.5. Group 1 Operate Instruction
 0 0 0 0 0 0 0 0 0 1 1
 0 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+
		C	C	C	C	R	R	T	I
1 1 1	0	L	L	M	M	A	A	W	A
		A	L	A	L	R	L	O	C
+-+-+-+-+-+-+-+-+-+-+-+-+

The group 1 operate instruction can clear, complement, increment, and rotate
the AC register and the LINK flag.

The group 1 operate instruction is micro-coded, and any combination of micro-
coded functions can be specified. The micro-coded functions are executed in a
definite order; first the clears (CLA, CLL), then the complements (CMA, CML),
then the increment (IAC), then the rotates (RAL, RAR, RTL, RTR).

[04] CLA The AC register is cleared.

[05] CLL The LINK flag is cleared.

[06] CMA The AC register is (ones) complemented.

[07] CML The LINK flag is complemented.

[08] RAR The AC register and LINK flag are rotated right by one or
two bits, depending on the value of the TWO bit.

[09] RAL The AC register and LINK flag are rotated left by one or two
bits, depending on the value of the TWO bit.

[10] TWO If a rotate is specified by bit [08] or bit [09], then that
rotate is by two bits rather than by one bit.

[11] IAC The AC register is incremented. If there is a carry out of
the most significant bit of the AC register the LINK flag is
complemented.

Three of the eight possible combinations of bits [08..10] are undefined. Two of
these (110, 111) try and rotate the AC register and LINK flag left and right at
the same time; this rotate results in the logical OR of both rotations. The
third (001) attempts to do no rotate by two bits; this rotate does nothing.

I need to look very carefully at the engineering drawings of the PDP-8/I and
see if this is the correct interpretation of codes 110 and 111; there are a lot
of low-true signals in the data path, and that might cause the result to
actually be the logical AND of both rotations.

2.6. Group 2 Operate Instruction
 0 0 0 0 0 0 0 0 0 1 1
 0 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+
		C	S	S	S	R	O	H	
1 1 1	1	L	M	Z	N	S	S	L	0
		A	A	A	L	S	R	T	
+-+-+-+-+-+-+-+-+-+-+-+-+

The group 2 operate instruction can test the contents of the AC register and/or
the LINK flag by conditionally skipping the next instruction. It can also clear
the accumulator, read the switch register, and explicitly halt the processor
(which forces control back into the console program).

The group 2 operate instruction is micro-coded, and any combination of micro-
coded functions can be specified. The micro-coded functions are executed in a
definite order; first the skips (SMA, SZA, SNL, RSS), then the clear (CLA),
then the switch register read (OSR), and finally the halt (HLT).

[04] CLA The AC register is cleared.

[05] SMA The test condition is true if the AC register is less than
zero (that is, if AC[00] is 1).

[06] SZA The test condition is true if the AC register is 0.

[07] SNL The test condition is true if the LINK flag is 1.

[08] RSS If this bit is 0 then the processor skips if any of the test
conditions are true. If this bit is 1 then the processor

skips if none of the test conditions are true. Another way
to think about this bit is that it reverses the test
conditions, and the skip happens if all of the (reversed)
test conditions are true.

[09] OSR The AC register is replaced with the bit-by-bit inclusive-or
of the AC register and the SW register.

[10] HLT The processor halts. A halt interrupt is generated. Control
passes to the front panel program.

2.7. Group 3 Operate Instruction
 0 0 0 1
 0 2 3 1
+-+-+-+-+-+-+-+-+-+-+-+-+
1 1 1	1		1
+-+-+-+-+-+-+-+-+-+-+-+-+

The group 3 operate instruction is used to control the extended arithmetic
element (EAE). The PDP-8/X does not implement the EAE, so all group 3
instructions are no-operation instructions. This is the correct interpretation
for a system which wants to be compatible with the PDP-8/I (the original PDP-8
honored the CLA bit of a group 3 operate instruction, even if the EAE was not
installed, and the PDP-8/E always implements the MQ register and the group 3
operate instructions which move its contents to and from the AC register, even
if the EAE is not installed).

2.8. Operating Modes
The PDP-8/X does not implement the traditional switches and lights console of
the PDP-8/I. Instead, it implements a console program, which performs all of
the functions normally provided by the switches and lights console (and more),
driven by commands from the console terminal.

Implementing a console program is tricky on the PDP-8 because the architecture
has considerable “off to the side” state which is difficult to save and
restore. In addition, there is really no place to hide the console program in
the physical address space; PDP-8 software does not believe that any part of
the 32K word memory is reserved for a console program. The PDP-8/X solves this
problem in a way which is similar in spirit, but different in detail, to the
INTERSIL 6100 and 6120 processor chips used in the VT78 and DECMATE products.

The PDP-8/X operates in one of two modes, controlled by the IM flag. If the IM
flag is 0 then the CPU is architecturally halted, and the console program is
running. If the IM flag is 1 then the CPU is architecturally running, and a
user program is running. In both cases the processor is executing normal PDP-8
instructions.

When the IM flag is 0 all instruction field and data field references, with one
exception (which will be described later), are diverted into a special 4K word
memory dedicated to the console program; it does not matter what values are in
the IF, IB, and/or DF registers. The one exception involves data field
references. The console program can execute a special IOT instruction which

makes any data field reference made by the next instruction operate normally;
it accesses the normal memory field specified by the DF register. This lets the
console program examine and deposit normal memory when necessary.

When the IM flag is 0 interrupts and halts are blocked (even if the state of
the IE and II flags would allow interrupts). Furthermore, the implicit changes
to the system state which normally happen on JMP and JMS instructions (the
contents of the IB register being loaded into the IF register, and the II flag
being set to 0) are blocked as well (although a special IOT instruction can be
used to explicitly perform this operation, which is needed to completely update
the state of the processor). The idea is that when then console program is
running most of the “off to the side” state can be left sitting in the CPU; the
only things which need to be saved are the AC register, the LINK flag, and the
DF register.

A special IOT instruction is used to set the IM flag to 1, returning the CPU to
the architecturally running state. There is a one instruction delay so that the
final JMP is fetched from the special control panel memory. It is not possible
to take an interrupt between the last instruction of the control panel program
and the first instruction of the normal program, so that if the CPU is halted
immediately after the execution of an ION, the one instruction grace period is
(effectively) preserved.

2.9. Interrupts
A normal interrupt is generated at the end of any instruction if the CPU is
architecturally running (the IM flag is 1), interrupts are enabled (the IE flag
is 1), interrupts are not inhibited (the II flag is 0), and some device is
making an interrupt request. If all of these conditions are true the CPU copies
the current values of the IF and DF registers into the SF register, sets the IB
register to 0, sets the IF register to 0, sets the DF register to 0, sets the
IE flag to 0, stores the value of the PC in location 0000 of field 0 of normal
memory, and sets the PC to 0001. The interrupt handler begins executing from
location 0001 in normal memory, and future interrupts are disabled because the
IE flag is 0.

A halt interrupt is generated at the end of any instruction if the CPU is
architecturally running (the IM flag is 1), and there is a halt request (either
the last instruction executed was a group 2 operate with the HLT bit set, or
the external halt request signal is asserted). If both of these conditions are
true the CPU sets the IM flag to 0, sets the DM flag to 0, stores the value of
the PC in location 0000 of field 0 of panel memory, and sets the PC to 0001.
The halt handler begins executing from location 0001 in panel memory, and
future halts are disabled because the IM flag is 0.

If both a normal interrupt and a halt interrupt are being requested at the end
of any instruction a halt interrupt is taken.

2.10. CPU Control I/O Instructions
The PDP-8/X CPU uses IOT instructions with device code 00 to control the
interrupt logic, and, when architecturally halted, to control the front panel
emulation logic. The nonstandard IOT instructions do nothing in normal mode.

6000 PWS The contents of the AC register are loaded into the SW
register. This instruction performs no operation if the IM
flag is 1.

6001 ION The IE flag is set to 1, enabling interrupts, after a one
instruction delay.

6002 IOF The IE flag is set to 0, disabling interrupts.

6003 PSI Skip if the IE flag is 1. This instruction performs no
operation if the IM flag is 1.

6004 PAI The contents of the IB register are loaded into the IF
register, and the II flag is set to 0, just as if a JMP or
JMS was executed when the IM flag is 1. This instruction
performs no operation if the IM flag is 1.

6005 PAS The contents of the DF register are loaded into bits
[03..05] of the SF register, and the contents of the IF
register are loaded into bits [00..02] of the SF register,
just as they would be loaded on an interrupt. This
instruction performs no operation of the IM flag is 1.

6006 PDX The DM flag is set to 1 for the execution of the next
instruction. This instruction executes normally if IM is 1,
but since DM is 1 anytime IM is 1, it effectively performs
no operation.

6007 PEX The IM flag is set to 1, switching the CPU into normal mode,
after a one instruction delay. This instruction executes
notmally if IM is 1, but effectively performs no operation.

2.11. Extended Memory I/O Instructions
The PDP-8/X CPU uses IOT instructions with device codes between 20 and 27 to
control the extended memory control logic. The implementation is compatible
with the MC8/I memory extension control, without the KT8/I timeshare control.

62x1 CDF Bits [06..08] of the instruction are loaded into the DF
register.

62x2 CIF Bits [06..08] of the instruction are loaded into the IB
register, and the II flag is set to 1. The contents of the
IB register will be loaded into the IF register, and the II
flag will be set to 0, when the next JMP or JMS instruction
is executed. The reload happens after any instruction and/or
indirect address words are read, but before the JMS writes
its return address; the return address is written to the new
instruction field. The II flag blocks interrupts between the
CIF and the JMP/JMS (page 53 of the 1970 small computer
handbook describes the effect of the II flag, even though
the flag itself is not described clearly).

6214 RDF The contents of the DF register are logically OR’ed into
bits [06..08] of the AC register.

6224 RIF The contents of the IF register are logically OR’ed into
bits [06..08] of the AC register.

6234 RIB The contents of the SF register are logically OR’ed into
bits [06..11] of the AC register; if the AC register is
initially 0, then bits [09..11] of the AC register get the
value which was in the DF register at the time of the last
interrupt, and bits [06..08] of the AC register get the
value which was in the IF register at the time of the last
interrupt.

6244 RMF Bits [03..05] of the SF register are loaded into the DF
register, bits [00..02] of the SF register are loaded into
the IB register, and the II flag is set to 1. The next JMP
or JMS instruction completes the restore.

The extended memory control instructions are, in fact, microcoded, with bit
[11] determining if the instruction should change the data field, bit [10]
determining if the instruction should change the instruction field, and bit
[09] determining if a special function should be executed. All combinations of
these three bits function correctly, although instructions which combine a
field change operation with a special function are probably not useful.

Since PDP-8/X does not implement the timeshare control, the instructions
normally used by the timeshare control (6204, 6254, 6264, 6274) perform no
operation.

3. External I/O
The PDP-8/X system contains a number of built in I/O devices; a serial port, an
IDE disk port, and an expansion port. All of the these devices are accessed
using IOT instructions. IOT instructions which specify nonexistent devices are
completely ignored.

3.1. Serial I/O
The serial port interfaces with devices which comply with the RS-232
specification. The PDP-8/X controller is compatible with the controller which
was used on the PDP-8/I (the controller seems to have been considered to be
part of the processor, and so it does not have an option number).

The receive side of the serial port emulates the teletype keyboard on device
code 03. The I/O instruction is micro-coded, with bit [11] of the instruction
determining if the IOT instruction should skip if the keyboard flag is set, bit
[10] determining if the AC register and the keyboard flag should be cleared,
and bit [09] determining if the receive data buffer should be merged with the
AC register using a logical OR operation. Although all combinations of these
three bits functions correctly, some combinations are more common that others,
and are assigned mnemonics. Use of IOT instructions outside of this set may
cause compatibility problems with software written for the (somewhat more
sophisticated) interface of the PDP-8/E.

6031 KSF Skip if the keyboard flag is set.

6032 KCC Clear the AC register and the keyboard flag.

6034 KRS Inclusive-or the contents of the keyboard buffer into the AC
register.

6036 KRB Load the contents of the keyboard buffer into the AC
register, and clear the keyboard flag. The flag will set
when the next character is received.

Although the serial port interface is essentially data leads only, the state of
the receive flag can be read on the RTS pin (the active-low RTS signal is true
if the receive flag is false). This allows a terminal emulator, which may be
sending a file, to avoid sending characters when the PDP-8/X is not ready to
read then; think of this as an RS-232 version of “reader run”.

The transmit side of the serial port emulates the teletype printer on device
code 04. The I/O instruction is microcoded, with bit [00] of the instruction
determining if the IOT instruction should skip if the teleprinter flag is set,
bit [01] determining if the teleprinter flag should be cleared, and bit [02]
determining if the data buffer should be written. Although all combinations of
these three bits functions correctly, some combinations are more common that
others, and are assigned mnemonics. Use of IOT instructions outside of this set
may cause compatibility problems with software written for the (somewhat more
sophisticated) interface of the PDP-8/E.

6041 TSF Skip if the teleprinter flag is set.

6042 TCF Clear the teleprinter flag.

6044 TPC Begin printing the character whose code is in the AC
register.

6046 TLS Begin printing the character whose code is in the AC
register, and clear the teleprinter flag. The flag will set
when the character has been printed.

The serial port data rate is fixed at 9600 baud, which is generated by dividing
down a 1.832 MHz oscillator.

At reset the keyboard flag and the teleprinter flag are cleared. This is a
useful initial state for the keyboard flag, but not a useful initial state for
the teleprinter flag, which must be set. The front panel program sets the
teleprinter flag by typing a NUL character; the TFL instruction, which sets the
teleprinter flag, cannot be used because TFL is a PDP-8/E only instruction.

3.2. Disk I/O
The disk port interfaces with disks which comply with the ATA-2 (IDE)
specification. The PDP-8/X controller is very simple, and only supports type-0
programmed I/O operations (the slowest mode). There is no provision for direct
memory access. The 512-byte sectors of the ATA-2 disk mesh perfectly with the
256-word sectors used by the PDP-8/X.

Although the ATA-2 interface is defined to have a 16-bit data bus, the most
significant 8 bits of the bus are only used for data transfers. All control
registers are defined to be 8 bits wide, and all control transfers happen on
the least significant 8 bits of the data bus. This allows for a very simple

mapping of the PDP-8/X 12-bit data bus to the ATA-2 16-bit data bus; the PDP-
8/X data bus is connected to the least significant 12 bits of the ATA-2 data
bus, and the most significant 4 bits of the ATA-2 data bus are ignored on reads
and unpredictable on writes.

The disk instructions are:

67x0 HSI Skip if the ATA-2 interface is requesting an interrupt; that
is, if the INTRQ signal is asserted.

67x4 HRR Read a register in the ATA-2 command register block (that
is, a register in the space which is accessed with CS0
asserted and CS1 negated). Bits [06..08] of the instruction
word supply DA[02..00] to the ATA-2 interface. Bits [00..11]
of the AC register get whatever data is supplied by the ATA-
2 device; bits [00..03] of the AC register will be
unpredictable if anything other than the data register
(DA[02..00] = 0) is read.

67x5 HWR Write a register in the ATA-2 command register block (that
is, a register in the space which is accessed with CS0
asserted and CS1 negated). Bits [06..08] of the instruction
word supply DA[02..00] to the ATA-2 interface. Bits [00..11]
of the AC register are supplied to the ATA-2 device, which
ignores bits [00..03] if anything other than the data
register (DA[02..00] = 0) is written. The AC register is
cleared.

67x6 HRS Read a register in the ATA-2 control block (that is, a
register in the space which is accessed with CS0 negated and
CS1 asserted). Bits [06..08] of the instruction word supply
DA[02..00] to the ATA-2 interface, but the only sensible
value is 6, which accesses the alternate status register
(hence the instruction’s mnemonic). Bits [00..11] of the AC
register get whatever data is supplied by the ATA-2 device;
bits [00..03] of the AC register will be unpredictable.

67x7 HWC Write a register in the ATA-2 control block (that is, a
register in the space which is accessed with CS0 negated and
CS1 asserted). Bits [06..08] of the instruction word supply
DA[02..00] to the ATA-2 interface, but the only sensible
value is 6, which accesses the device control register
(hence the instruction’s mnemonic). Bits [00..11] of the AC
register are supplied to the ATA-2 device, which ignores
bits [00..03]. The AC register is cleared.

Any IOT instruction with bit [09] = 0 acts as an HSI, so the undefined
instructions (67x1, 67x2, 67x3) act as if they were 67x0. There is some
possibility that one or more of these instructions may be reassigned in the
future.

3.3. Expansion I/O
The expansion port is a header attached to the same busses used by the serial
and disk I/O devices. Software transfers data to and from a device attached to

the expansion port using programmed I/O. There is no provision for direct
memory access.

An empty expansion port connector never requests an interrupt. Expansion port
devices should be designed to clear any interrupt request on reset, otherwise
the console program will need to be updated.

4. Console Program
The console program performs all of the low-level initialization of the PDP-8/X
system, all of the functions of the switches-and-lights front panel of the
original PDP-8/I, and more (such as symbolic disassembly of memory).

When the PDP-8/X is reset the 4K word ROM is copied into the special front
panel memory, the PC is set to 0000, and the IM flag is set to 0. A JMP at
location 0000 sends control to the cold start entry point of the debugging
program. The cold start entry point initializes the CPU, initializes the I/O
devices, and jumps to the command parser.

When the PDP-8/X halts the PC register is stored in location 0000 of the panel
memory, and control passes to location 0001.

The console program's parser works character-at-a-time so it can be small. When
an illegal character is detected “XXX” is typed, and the partially parsed
command is discarded. All numbers are octal.

A [d] Examine or deposit the AC register.

D a [d ...] Deposit memory in octal.

E a [n] Examine memory in octal.

F [d] Examine or deposit field data. The “d” argument is of the
form IDSS, where I represents the IF/IB registers, D
represents the DF register, and SS represents the SF
register.

G [a] Go. If an “a” argument is specified the PC is set to “a”,
the IF, IB, and DF registers are set to 0, interrupts are
disabled, and the AC is set to 0000, before the program
starts.

I [d] Examine or deposit the IE flag.

L [d] Examine or deposit the LINK flag.

P [d] Examine or deposit the PC register.

R Load a binary file in BIN loader format. Only one segment of
a multi-segment file will be loaded; multi-segment files
(for example, FOCAL) will need to be reformatted into a
single segment. If a checksum error happens reading stops,
and the residual checksum is displayed.

S [d] Examine or deposit the SW register.

U a [n] Examine memory in octal and as instructions.

X op [d] Execute the instruction specified by the “op” argument. If a
“d” argument is specified then that value is loaded into the
AC register before the instruction is executed, otherwise 0
is loaded into the AC register before the instruction is
executed. The value of the AC register after the instruction
is executed, and an indication if the instruction ends in a
skip, is printed. The instruction is usually an I/O
instruction, although any instruction can be specified.

Y Read physical block 0 (which corresponds to logical block 0
of partition 0) of the disk into location 0 or normal
memory. Normally this will contain an OS/8 bootstrap block,
which can be started by a “G 0”.

